MATH 4030 Differential Geometry Problem Set 6

due 1/12/2017 (Fri) at 5PM

Problems

(to be handed in)

- 1. Show that if all the geodesics of a connected surface are plane curves, then the surface is contained in a plane or a sphere.
- 2. If $S \subset \mathbb{R}^3$ is a closed surface with positive Gauss curvature K > 0, show that any two simple closed geodesics on S must intersect.
- 3. Let $\Sigma \subset \mathbb{R}^3$ be a closed orientable surface which is not homeomorphic to a sphere. Prove that there are points on Σ where the Gauss curvature K is positive, negative and zero respectively.
- 4. Let T be a torus of revolution which can be parametrized (except along two curves) by

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u), \qquad 0 < u < 2\pi, 0 < v < 2\pi.$$

Prove by an explicit calculation that the total Gauss curvature is

$$\int_T K \, dA = 0$$

5. Let $\alpha(s) : [0, L] \to \mathbb{R}^2$ be a simple closed convex plane curve p.b.a.l which is oriented in the counterclockwise direction. Let $\{T(s), N(s)\}$ be the Frenet frame of $\alpha(s)$. The curve $\beta(s) : [0, L] \to \mathbb{R}^2$ given by

$$\beta(s) := \alpha(s) - rN(s),$$

where r > 0 is a constant, is called a *parallel curve* to α . Show that

- (a) Length $(\beta) = \text{Length } (\alpha) + 2\pi r.$
- (b) Area $(\Omega_{\beta}) = \text{Area} (\Omega_{\alpha}) + rL + \pi r^2$,

where Ω_{α} , Ω_{β} are the regions bounded by α and β respectively.

- 6. Let $\alpha(s) : [0, L] \to \mathbb{R}^3$ be a closed space curve p.b.a.l. with curvature k > 0 and torsion τ . Denote $\{T(s), N(s), B(s)\}$ to be the Frenet frame of $\alpha(s)$. We can regard $N(s) : [0, L] \to \mathbb{S}^2$ as a curve on the unit sphere \mathbb{S}^2 .
 - (a) Show that $\|\frac{dN}{ds}\| = \sqrt{k^2 + \tau^2}$ and hence $N(s) : [0, L] \to \mathbb{S}^2$ is a regular curve on \mathbb{S}^2 .
 - (b) Let t = t(s) be the arc length parameter of the curve N in (a). Show that

$$\frac{dN}{dt} = \frac{1}{\sqrt{k^2 + \tau^2}}(-kT - \tau B).$$

(c) Show that the geodesic curvature k_g of N as a curve in \mathbb{S}^2 (oriented by the outward unit normal) is given by

$$k_g = -\frac{d}{ds} \left(\tan^{-1} \frac{\tau}{k} \right) \left(\frac{dt}{ds} \right)^{-1}$$

(d) Assume furthermore that $N : [0, L] \to \mathbb{S}^2$ is a simple closed curve. Show that the image of N divides \mathbb{S}^2 into two regions with the same area.

Suggested Exercises

(no need to hand in)

- 1. Study the geodesics on a torus of revolution.
- 2. Follow the steps below to give a proof of the isoperimetric inequality in the plane. Let $\alpha(s)$: $[0, L] \to \mathbb{R}^2$ be a simple closed plane curve p.b.a.l. Let A be the area of the region Ω bounded by the curve α .
 - (a) Show that

$$2A \le \left(\int_0^L |\alpha(s)|^2 \ ds\right)^{\frac{1}{2}} L^{\frac{1}{2}}.$$

- (b) Prove that there exists some $s_0 \in (0, L/2)$ such that the line joining $\alpha(0)$ and $\alpha(L/2)$ is perpendicular to the line joining $\alpha(s_0)$ and $\alpha(s_0 + L/2)$.
- (c) By (b), we can assume after a translation and rotation of \mathbb{R}^2 that the two perpendicular lines in (b) intersect at the origin and that

$$\frac{\alpha(L/2) - \alpha(0)}{|\alpha(L/2) - \alpha(0)|} = (1,0) = e_1, \quad \frac{\alpha(s_0 + L/2) - \alpha(s_0)}{|\alpha(s_0 + L/2) - \alpha(s_0)|} = (0,1) = e_2.$$

Prove that

$$\int_{0}^{L} |\alpha(s)|^{2} \, ds \le \frac{L^{3}}{4\pi^{2}}$$

using the Wirtinger's inequality which says that

$$\int_{a}^{b} (f'(t))^{2} dt \ge \frac{\pi^{2}}{(b-a)^{2}} \int_{a}^{b} (f(t))^{2} dt$$
(1)

for any smooth function $f : [a, b] \to \mathbb{R}$ such that f(a) = f(b) = 0. Moreover equality holds in (1) if and only if $f(t) = C \sin \frac{\pi(t-a)}{b-a}$ for some constant $C \in \mathbb{R}$.

- (d) Using the above results, prove the *isoperimetric inequality* $4\pi A \leq L^2$. What about the equality case?
- 3. Let $\alpha(s): [0, L] \to \mathbb{R}^2$ be a simple closed plane curve p.b.a.l. which is contained in a closed disk of radius r > 0. Prove that

- (a) there exists $s \in [0, L]$ such that the curvature satisfies $|k(s)| \ge 1/r$;
- (b) if A is the area enclosed by the curve α , then

$$A \le \frac{r}{2}L$$

and equality holds if and only if α is a circle of radius r.

4. Let p_0 be a pole of a unit sphere \mathbb{S}^2 and q, r be two points on the corresponding equator in such a way that the meridians p_0q and p_0r make an angle θ at p_0 . Consider a unit vector v tangent to the meridian p_0q at p_0 , and take the parallel transport of v along the closed curve made up by the meridian p_0q , the parallel qr, and the meridian rp_0 (Fig. 4-21). Determine the angle between the final position of v after parallel transport with the initial vector v.

Figure 4-21